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ABSTRACT

Objective: The objective of this technical study was to evaluate the performance of an artificial intelligence (AI)-

based system for clinical trials matching for a cohort of lung cancer patients in an Australian cancer hospital.

Methods: A lung cancer cohort was derived from clinical data from patients attending an Australian cancer hos-

pital. Ten phases I–III clinical trials registered on clinicaltrials.gov and open to lung cancer patients at this institu-

tion were utilized for assessments. The trial matching system performance was compared to a gold standard

established by clinician consensus for trial eligibility.

Results: The study included 102 lung cancer patients. The trial matching system evaluated 7252 patient attrib-

utes (per patient median 74, range 53–100) against 11 467 individual trial eligibility criteria (per trial median 597,

range 243–4132). Median time for the system to run a query and return results was 15.5 s (range 7.2–37.8). In

establishing the gold standard, clinician interrater agreement was high (Cohen’s kappa 0.70–1.00). On a per-

patient basis, the performance of the trial matching system for eligibility was as follows: accuracy, 91.6%; recall

(sensitivity), 83.3%; precision (positive predictive value), 76.5%; negative predictive value, 95.7%; and specific-

ity, 93.8%.

Discussion and Conclusion: The AI-based clinical trial matching system allows efficient and reliable screening

of cancer patients for clinical trials with 95.7% accuracy for exclusion and 91.6% accuracy for overall eligibility

assessment; however, clinician input and oversight are still required. The automated system demonstrates

promise as a clinical decision support tool to prescreen a large patient cohort to identify subjects suitable for

further assessment.
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BACKGROUND AND SIGNIFICANCE

Prospective clinical trials are the gold standard for assessing the po-

tential harms and benefits of new cancer treatments. However, clini-

cal trial recruitment is challenging and time-consuming.1,2 As of

2018, only about 6% of patients with a cancer diagnosis in the state

of Victoria in Australia were recruited to clinical trials, with rates

unchanged for more than a decade.

While the global increase in the availability of clinical trials

should facilitate greater trial recruitment, a key deterrent is the te-

dious manual task of matching patients to clinical trials or identify-

ing a cohort of patients for a trial. Both processes require detailed

knowledge of patient characteristics and trial eligibility criteria, a

challenge given the growing number clinical trials available and

complexity of trial designs. Eligibility criteria for clinical trials can

narrowly define the study population and thus limit the number of

patients who can enroll in clinical trials. The time to screen patients

for trials can further limit enrollment.

Studies demonstrate that incorporating clinical decision support

into the management of oncology patients and automating referrals

to clinical trials show promise for increased patient referrals.1,3–9

IBMVR (Cambridge, MA, United States) Watson for clinical trial

matching (CTM) is a software platform developed to identify poten-

tial trials for individual patients or potential trial candidates for indi-

vidual trials. CTM uses natural language processing (NLP) to ingest

trial and patient information from unstructured sources and matches

patients to trials for which they might be eligible through machine

learning (ML) techniques. Previous studies have shown that CTM10

can reduce the screening time for clinical trials and increase trial en-

rollment.3

CTM determines the degree of eligibility based on the patient

clinical attributes entered. Features of the tool include the ability to

classify patients as “Exclude” (patient not eligible) or “Consider”

(patient potentially eligible), based on patient attributes and whether

the patient has unmet criteria which are modifiable conditions. This

mimics real-world practice and circumstances faced by clinical trial

screeners in which individual records are examined successively

against increasingly specific criteria to identify modifications that

can increase a patient’s chance for matching to a trial.

The objective of this retrospective study was to evaluate the per-

formance of CTM eligibility determinations against a selected pool

of active lung cancer trials for a cohort of potentially eligible

patients in an Australian cancer hospital.

METHODS

Participants
The lung cancer cohort was derived from a clinical dataset of

patients attending an Australian specialist cancer hospital and en-

rolled a prospective observational cohort study—the Thoracic Ma-

lignancies Cohort (TMC). The hospital institutional review board

(IRB) approved the TMC (study no. 17/70, approved January 4,

2012) as a prospective observational study; consenting patients are

followed from diagnosis or first hospital presentation at 3-month

intervals until death or loss to follow-up. The IRB approval and pa-

tient consent allow the TMC data to be used in other IRB approved

studies, including the current study (study no. 17/152L, approved

October 24, 2017).

Eligibility criteria for this study included diagnosis of small cell

lung cancer (SCLC) or non-small cell lung cancer (NSCLC) between

2012 and 2018. A pragmatic sample of approximately 100 cases

was selected based on most recent study follow-up, in reverse chro-

nological order from September 1, 2018. This data extraction date

was selected to allow at least 3 months for study follow-up at time

of data extraction (December 1, 2018), ensuring at least 1 routine

follow-up and complete data acquisition. Follow-up date, rather

than diagnosis or first presentation date, identified cases that defined

a representative sample of patients attending lung oncology clinics

during the study period. These selection criteria represent an unse-

lected patient cohort who may be considered for a range of clinical

trials including all stages of disease and clinical time points within a

patient’s journey, including newly diagnosed patients, treatment-

naı̈ve patients, previously treated patients, and patients receiving

ongoing treatment.

Data collection
Clinical trial eligibility criteria were extracted for 10 phases I–III

cancer clinical trials registered on clinicaltrials.gov that were open

to lung cancer patients at the Peter MacCallum Cancer Center in

Melbourne, Australia. Because inclusion and exclusion criteria in

ClinicalTrials.gov often require clarification, additional detail re-

quired for the CTM protocol ingestion was obtained from relevant

trial protocols. For example, an exclusion criterion in Clinical-

Trials.gov may state “no therapy allowed,” however, the institution

may clarify this by stating “no previous chemotherapy or radiother-

apy allowed” in the institutional protocol. CTM allows users to in-

gest eligibility criteria from ClinicalTrials.gov and modify as

needed. Watson’s NLP algorithms extracted eligibility and exclusion

criteria from the protocol library of Portable Document Format files

that contained previously extracted inclusion and exclusion criteria

for trials. The trial data intake was optimized with 3 rounds of trial

ingestion and evaluated by experts to validate ingestion protocols

prior to study inception.

Clinical data for included patients were extracted from the TMC

study database and medical records. De-identified patient attributes

such as histological diagnosis, stage, and prior therapies were manu-

ally entered in CTM. The TMC database collects the following vari-

ables at diagnosis: TNM staging according to 7th and 8th edition of

UICC staging criteria (as relevant for year of cancer diagnosis), his-

tological subtype (adenocarcinoma, squamous cell carcinoma, large

cell carcinoma, NSCLC not otherwise specified, carcinoid, SCLC),

mutation status (epidermal growth factor receptor [EGFR], anaplas-

tic lymphoma kinase [ALK], Kirsten rat sarcoma viral oncogene ho-

molog [KRAS], BRAF, MET); PDL1 expression; comorbidities

according to the Simplified Comorbidity Score11 including tobacco

consumption, diabetes mellitus, renal insufficiency, respiratory co-

morbidity, cardiovascular comorbidity, neoplastic comorbidity, and

alcoholism; Eastern Cooperative Oncology Group performance sta-

tus (PS); weight loss within 3 months of diagnosis (0–10%, 11–

15%, >15%); smoking history (current, past, never); smoking mag-

nitude (pack-years); sex, and age. Longitudinal data include cancer

treatment (chemotherapy, immunotherapy, targeted therapy, radio-

therapy, surgery), patient status, and response to therapy. Results of

specific diagnostic tests not mandated by the TMC study are col-

lected and reported if testing is performed as part of routine care.

CTM collects the following attributes: primary cancer staging,

metastatic disease (bone, brain, liver, lung CNS, epidural, menin-

geal, leptomeningeal), PS, mutations (ALK, EGFR, BRAF, ERBB2,

MET, NTRK1–3, PDL1, RAS [KRAS, NRAS, HRAS], RET, ROS),

prior cancer therapy (chemotherapy in any setting, adjuvant/

neoadjuvant setting or metastatic setting, platinum chemotherapy,
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hormone therapy, radiotherapy [radiosurgery, whole brain radio-

therapy]), lung surgery including surgical type, cancer histology,

demographics (age, gender, race), echocardiography, pathology

(FBE, U&E, other), past medical history, medications, comorbid-

ities, current setting (metastatic, adjuvant, neoadjuvant), and current

status (progressive disease).

Statistical analysis
This study tested the overall performance (including ML and NLP)

of the CTM eligibility determination process. CTM-processed clini-

cal trial eligibility criteria were checked and refined by 2 clinicians

(a medical oncologist and a pharmacist) prior to commencement of

matching. Accuracy of NLP processing of eligibility criteria from

trial protocol extracts was not evaluated, because the eligibility cri-

teria in ClinicalTrials.gov was modified to include additional proto-

col details, including laboratory results not included in the database.

Once matching was complete, a timed query was executed using a

cloud-based instance of CTM. Each patient was assessed for eligibil-

ity against potential trials and classified by CTM as “Exclude” (pa-

tient not eligible) or “Consider” (patient potentially eligible).

A gold standard for trial eligibility was determined for each pa-

tient and the 10 cancer trials by manual review of patient attributes

entered into CTM (not the full medical record) by 2 clinicians, with

discrepancies discussed to achieve consensus. Accuracy (agreement),

recall (sensitivity), specificity, and precision (positive predictive

value [PPV] and negative predictive value [NPV]) of CTM trial clas-

sification was measured against this gold standard. CTM perfor-

mance was further classified by counts (per trial and overall) of the

total number of individual inclusion/exclusion criteria assessed by

CTM and the proportion of assessments that agreed with the gold

standard. Interrater reliability between clinicians involved in manual

review leading to a consensus gold standard was measured by

Cohen’s kappa with reported standard error.

RESULTS

A total of 102 lung cancer patients were included in the study and

assessed for eligibility against 10 lung cancer clinical trials. Patient

attributes and trial features are summarized in Table 1 and Figure 1,

respectively. More detailed trial descriptions are available in Supple-

mentary Table S1.

CTM evaluated a total of 7252 patient attributes (per patient me-

dian 74, range 53–100) against 11 467 individual trial eligibility crite-

ria (per trial median 597, range 243–4132). This dataset consisted of

4818 patient attributes entered by clinicians (per patient median 49,

range 24–78) and 2434 attributes derived by CTM (per patient me-

dian derivation of an additional 25 attributes by CTM, range 16–33).

The median time for CTM to run a query and return eligibility

determinations for 102 patients against 10 trials was 15.5 s (range

7.2–37.8 s). In establishing the gold standard comparator, clinician

interrater agreement was high (Cohen’s kappa 0.70–1.00, Table 2),

with disagreement due to selection error or overlooked features/cri-

teria, rather than material disagreement. Agreement was lowest for

trial 10, in which clinician interpretation of exclusion criteria relat-

ing to “relevant” driver mutations was discrepant. Differences were

reconciled on discussion, which determined that patients with driver

mutations would remain potentially eligible, due to the lack of detail

provided for classification of excluded mutations. This detail was in-

cluded only in trial appendices and thus not available to CTM for

processing, nor considered in clinician assessments. Excluding this

trial, agreement levels were �97% (Cohen’s kappa 0.82–1.00). On

a per-patient basis, the accuracy of CTM for eligibility classification

across trials was 91.6%; recall (sensitivity), 83.3%; precision, (PPV)

76.5%; NPV, 95.7%; and specificity was 93.8%. When considering

trials classified as “Exclude” by CTM, accuracy was 95.7%, with

34 of 799 trials incorrectly excluded. Conversely, for trials classified

as “Consider” by CTM, accuracy was 76.5%, with 52 of 221 la-

beled “Consider” that should have been excluded. CTM accuracy

for individual trials ranged from 77% to 100% (Table 2).

Table 1. Selected patient attributes entered in CTM

Demographics No. %

Age, median (range) 69 (26–91)

Sex, male 57 56

Race

Caucasian 40 39

Asian 11 11

Other 2 2

Not stateda 49 48

Cancer staging

Metastatic at diagnosis 42 41

Metastatic at screening 46 45

Measurable disease

Yes 36 35

No 36 35

Unknown/requires assessment 30 29

Histology and mutation

NSCLC, non-squamous 71 78

NSCLC, squamous 20 28

SCLC 4 4

Neuroendocrine 2 2

No histologic diagnosis 5 5

Mutation positive

EGFR 21 21

ALK 11 11

KRAS 5 5

BRAF 2 2

ROS1 0 0

PDL1 expression known and >1% 10 10%

Prior cancer treatment

Any chemotherapy 57 56

Neoadjuvant or adjuvant chemotherapy 9 9

Metastatic chemotherapy 30 29

Platinum chemotherapy 30 29

Biologic/targeted therapy 26 25

Immunotherapy 20 20

Any radiotherapy 82 80

Any lung surgery 22 22

Other

ECOG performance status, 0–1 71 70

ECOG performance status, �2 28 27

ECOG unknown 4 2

History prior malignancy 22 22

Current smoker 12 12

aNote: Attributes presented as entered into CTM with all field accurately

representing data from the prospective clinical database expect for race which

was available for all patients, however, only entered in CTM for a portion of

patients due to data entry omission.

Abbreviations: ALK: anaplastic lymphoma kinase; BRAF: proto-oncogene

B-Raf; CTM: clinical trial matching; ECOG: Eastern Cooperative Oncology

Group; EGFR: epidermal growth factor receptor; KRAS: Kirsten rat sarcoma

viral oncogene homolog; NSCLC: non-small cell lung cancer; PDL1: pro-

grammed death ligand 1; ROS1: ROS proto-oncogene 1; SCLC: small cell

lung cancer.
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Among all trials, 1490 trial eligibility criteria (inclusion/exclu-

sion) were listed as “not met” by CTM (90% agreement with gold

standard), 1231 were “met” (96% agreement), 8088 were identified

as requiring further action to make a decision and listed as “action

needed” (89% agreement), 136 were identified as “unmet mod-

ifiable” (90% agreement), and 522 consent criteria were reviewed

(81% agreement). The number of data elements and criteria varied

by trial, with trial 6 representing an umbrella multicohort design

with a notably higher number of criteria. Agreement between CTM

and gold standard was lower for trials 6 and 7, reflecting complexity

of trial 6 and interpretation difficulties by CTM relating to techni-

calities of exclusion for prior radiotherapy in trial 7. For each clini-

cal trial, the total number of items assessed, their CTM

classifications, and accuracy are detailed in Table 3.

In general, false positives and false negatives were the result of

incorrect interpretation of eligibility criteria (IF THEN logic) by

CTM. The most common cause of false positives and false negatives

was misclassification of metastatic status in the context of progres-

sive disease (ie, non-metastatic primary staging but metastatic at

trial screening), summarized in Table 4.

DISCUSSION

This study is the first to evaluate performance of CTM eligibility

determinations outside of the United States. In our unselected pa-

tient cohort, CTM software was able to reliably exclude ineligible

patients from trial consideration (>95% accuracy), but less accu-

rately identified eligible patients (77%). One contributing factor

that limited CTM’s ability to determine eligibility was that for the

102-patient cohort, 8088 data items were identified as requiring fur-

ther action (data input or clinician interpretation of eligibility). In

routine use of CTM in clinical practice, this reconciliation process is

part of the normal workflow, but it was not done as part of this ret-

rospective study.

CTM performance in this cohort exceeded that of a previous

study of CTM undertaken at Mayo Clinic in the United States in

which accuracy was reported as 87.6% for 4 breast and 74.9%

for 3 lung cancer trials.12 In the Mayo study, CTM used NLP to

process unstructured electronic health record (EHR) documents

to ingest patient data, whereas in this study, clinical data were

entered into CTM directly. Both manual entry and NLP processes

can introduce errors. While intended clinical utilization of CTM

includes ingestion of patient data from an EHR, the hospital in

our study did not yet have an integrated EHR. Therefore, our

study tested CTM’s decision-making algorithms for trial eligibil-

ity, rather than its NLP capabilities in the patient ingestion pro-

cess.

Our study evaluated combined NLP and ML performance of

CTM for evaluation of eligibility criteria but did not separately eval-

uate these components. Zhang et al13 have reported on NLP classifi-

cation methods for eligibility of HIV-positive patients for

interventional cancer trials and eligibility of HIV-positive and preg-

nant women for general interventional trials. F2 scores (weighted

average of precision and recall) ranged from 77% to 91% for these

methods. Relative to a comparative trial matching platform from

the Cincinnati Children’s Hospital Medical Center (CCHMC),

CTM demonstrated significantly greater precision but lower recall

and NPV. CCHMC developed and implemented its own clinical

trial eligibility screening algorithm, reporting outcomes on 55 trial

protocols and 215 pediatric oncology patients.8 Employing similar

methods as used in our current study, CCHMC oncologists con-

ducted manual medical record review for a randomly selected pa-

tient subset to generate a gold standard for performance assessment.

In the CCHMC study, the best reported performance for matching

trials to patients was 36% precision (vs 77% in the current study),

100% recall (vs 83%), 100% NPV (vs 96%), and 95.5% specificity

(vs 94%). There are open-source tools to help with the process of

clinical trials matching, however, the need for labeled data for NLP

training and large datasets for ML can create obstacles to the success

Table 2. Clinician and CTM agreement with gold standard for overall trial eligibility status

Trial ID

Number of

criteria assessed

Clinician interrater agreement for establishing gold standard % patients listed for trial consideration CTM and gold

standard

Agreement (%) Kappa Std. Err CTM (%) Gold standard (%) Agreement (%)

1 270 100 1.000 0.099 1 2 99

2 560 97 0.872 0.098 1 1 92

3 243 100 NR NR 0 0 100

4 1010 99 0.967 0.099 23 18 93

5 313 98 0.823 0.099 3 6 97

6 4132 99 0.980 0.099 59 40 77

7 634 97 0.919 0.099 11 25 78

8 486 100 1.000 0.099 8 5 97

9 1795 100 1.000 0.099 49 48 93

10 2024 85 0.703 0.096 53 46 89

Abbreviations: CTM: clinical trial matching; NR: not reported; Std. Err: standard error.

Figure 1. Clinical trial setting, intervention, and phase. Summary of patient

attributes and clinical trial features.
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of open-source tools, many of which are developed in academic set-

tings.14

Integration of clinical trial alert systems with EHRs has shown

the potential to increase overall enrollment in trials, despite the alert

fatigue noted by these studies.15–18

Tools such as Deep 6 AI,19 Mendel.ai,20 Antidote,21 Smart

Patients,22 and Synergy23 are examples of artificial intelligence trial

matching systems using ML and NLP. However, to the best of our

knowledge there are no studies directly comparing these tools to

each other. Publications in this area are mostly abstracts using

limited datasets. Mendel.ai have published a retrospective study

assessing the ability of their software to increase identification of eli-

gible patients for 3 studies.24 For 2 of the studies, 24% and 50% po-

tentially eligible patients were additionally identified. By

comparison, our work analyzed a significantly larger number of

studies, including phases I–III trials across a variety of treatment set-

tings and modalities as available on ClinicalTrials.gov and recruiting

at our institution.

Table 3. CTM assessment of individual trial inclusion and exclusion criteria

Trial ID

Median

(range),

per pt Total

Agreement Median

(range),

per pt Total

Agreement Median

(range),

per pt Total

Agreement Median

(range),

per pt Total

Agreement

No. % No. % No. % No. %

Not met inclusion criteria Not met exclusion criteria Met inclusion criteria Met exclusion criteria

1 2 (0–4) 236 233 99 0 (0–2) 4 3 75 4 (4–4) 4 4 100 2 (2–2) 2 2 100

2 1 (0–4) 143 138 97 0 0 0 – 5 (3–8) 58 58 100 0 0 0 –

3 3 (1–4) 243 237 98 0 0 0 – 0 0 0 – 0 0 0 –

4 1 (0–4) 130 126 97 0 0 0 – 5 (3–6) 105 104 99 5 (1–7) 106 105 99

5 1 (0–3) 135 124 92 0 0 0 – 7 (4–9) 27 27 100 1 (0–1) 2 2 100

6 1 (0–2) 79 65 82 0 (0–2) 28 28 100 5 (2–6) 229 218 95 3 (0–7) 138 106 77

7 1 (0–3) 93 63 68 0 (0–1) 18 1 6 5 (3–7) 68 68 100 2 (0–4) 26 26 100

8 2 (0–5) 253 198 78 0 0 0 – 5 (5–6) 32 31 97 1 (1–1) 6 6 100

9 1 (0–2) 56 56 106 0 0 0 – 3 (1–5) 124 124 100 0 0 0 –

10 0 (0–3) 72 68 94 0 0 0 – 5 (2–8) 253 251 99 1 (0–2) 51 49 96

All trials 1440 1308 91 50 32 64 900 900 885 331 296 89

Action needed inclusion criteria Action needed exclusion criteria Unmet modifiable condition Consent criteria

1 8 (8–8) 8 7 88 13 (13–13) 13 11 85 0 0 0 – 3 (3–3) 3 2 67

2 7 (5–10) 82 75 91 23 (22–23) 250 232 93 1 (0–1) 7 7 100 2 (1–2) 20 12 60

3 0 0 0 – 0 0 0 – 0 0 0 – 0 0 0 –

4 2 (1–3) 47 43 91 23 (22–29) 531 484 91 0 (0–1) 3 3 100 4 (4–4) 88 68 77

5 16 (15/17) 63 56 89 18 (17–18) 70 65 93 2 (2–4) 10 2 20 2 (1–2) 6 6 100

6 18 (13–19) 874 750 86 52 (29–54) 2567 2258 88 1 (0–5) 70 66 94 3 (2–3) 147 92 63

7 7 (6–11) 98 83 85 21 (19–22) 268 245 91 0 (0–3) 12 12 100 4 (3–4) 51 38 75

8 22 (20–22) 129 110 85 8 (7–8) 46 43 93 0 (0–1) 2 1 50 3 (3–3) 18 17 94

9 16 (14–17) 754 674 89 15 (15–15) 705 701 99 0 (0–2) 18 18 100 3 (3–3) 138 137 99

10 17 (9–21) 859 731 85 15 (13–16) 724 652 90 0 (0–3) 14 14 100 1 (1–2) 51 49 96

All trials 2914 2529 87 5174 4691 91 136 123 90 522 421 81

Note: Not met criteria assessed for all trials; met, action needed, modifiable, and consent criteria assessed only for CTM eligible trials. All patients classified

not eligible for trial 3.

Abbreviations: CTM: clinical trial matching; pt: patient.

Table 4. CTM misclassifications

Misclassification

category Misclassifications detail

Number of misclassifications per trial

1 2 3 4 5 6 7 8 9 10 All

Stage Failure to detect metastatic disease status for patient with non-metastatic

primary staging but metastatic disease at screening

0 3 0 1 1 3 0 1 3 2 14

Failure to detect disease stage as not advanced/metastatic 0 0 0 2 0 4 3 0 2 6 17

Failure to detect absence of measurable disease 0 0 0 4 0 0 0 0 0 0 4

Detection of metastatic disease but failure to recognize as exclusion 0 0 0 0 0 13 0 0 0 0 13

Diagnosis Failure to recognize mutation status as exclusion criteria 0 3 0 0 0 0 0 0 0 0 3

Failure to recognize histology as exclusion criteria 0 0 0 0 0 1 0 0 0 0 1

Treatment Failure to consider prior therapy as part of exclusion criteria 0 0 0 0 0 0 1 2 2 0 5

Failure to consider timing of prior therapy as part of exclusion criteria 0 1 0 0 0 0 0 0 0 0 1

Failure to consider location of prior radiotherapy as part of exclusion criteria 0 0 0 0 0 0 18 0 0 0 18

Pathology Failure to apply correct logic relating to LFT in context of liver metastasis 0 0 0 0 2 0 0 0 0 0 2

Other Exclusion rules for sub-cohorts applied to overall study 0 0 0 0 0 1 0 0 0 0 1

Failure to recognize absence of progressive/recurrent disease 0 0 0 0 0 0 0 0 0 3 3

Abbreviations: CTM: clinical trial matching; LFT: liver function tests.
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We demonstrate the feasibility of developing and implementing

an automated patient-trial classification system and highlight the

clinical need for such systems, given the increasing challenge of man-

ual matching and the trend toward increasingly complex, risk-based

eligibility criteria that are not necessarily clinically intuitive. It is

also the first such report using real-world data at an Australian can-

cer hospital. Importantly, we highlight the need for clinician input

and oversight to support automated systems and remind the infor-

matics community of the technical, intuitive, and nuanced clinician

interpretations and decisions required to fully assess trial eligibility

for an individual patient. CTM was designed and intended to be

used as a clinical decision support tool to aid rather than replace

clinicians in determining trial eligibility.

The current study has several limitations. First, although CTM is

capable of processing structured and unstructured information from

an EHR, only the matching components (NLP and ML perfor-

mance) of the CTM system were evaluated, because an EHR was

not integrated with CTM for this study. Second, we did not sepa-

rately evaluate the NLP and ML performance of CTM for eligibility

assessment. Third, the study included a relatively small number of

patients at a single center. Fourth, though reduction in manual labor

is a benefit of automated systems such as CTM, the manual entry of

data in this study (necessitated by the lack of an integrated EHR)

did not accurately reflect standard processes and so is not likely to

be representative of results using automated systems.

Strengths of the study are a rigorous gold standard for eligibility

with consensus agreement of 2 clinicians with high interrater reli-

ability. We also recognize that the clinician-derived gold standard in

this study is not feasible for larger scale studies. For larger studies, it

is likely that automated or semi-automated EHR data extraction

would be required, though such methods have their own limitations.

Therefore, we highlight the high value in a small dataset that has

had human review of every case as a strength of this study.

CONCLUSION

This study demonstrated that CTM allows efficient and reliable

screening of Australian lung cancer patients for clinical trials, with

96% accuracy in exclusion and 92% performance in assessing over-

all potential eligibility. Many patient attributes remained unknown

after CTM analysis, highlighting the need for clinician input and

oversight in assessing nuances of patient characteristics against indi-

vidual criteria.
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